

Today

® BFS/DFS
@ Review; proof about DFS tree
@ Implementation
@ Running time

@ Bipartite testing

@ Topological sort

Breadth-First Search

@ Property. Let T be a BFS tree of G = (V, E),
and let (x, y) be an edge of G. Then the layer
of x and vy differ by at most 1.

_ayer O: {a}

/I/ _ayer 1: {b, ¢, d}

—— _ayer 2: {e}

Proof?

Depth First Search

Theorem: Let T be a depth-first search tree.
Let x and y be 2 nodes in the tree. Let (X, V)
be an edge that is in G but not in T. Then

either x is an ancestor of y or y is an ancestor
of x in the DFS ftree. Q

-

Proof on board

Graph Traversal

Set explored|u] to be false for all u
A=1{s}
while A is not empty
Take a node u from A
if explored[u] is false
set explored[u] = true
for each edge (u,v) incident fo u
add v to A
end
end
end

BFS: A is a queue (FIFO)
DFS: A is a stack (LIFO)

BFS: Alternate Implementation

Set discovered[u] to be false for all u
A = queue { S }
layer(s] = O
discovered|s] = true
while A is not empty
Take a node u from A

for each edge (u,v) incident to u When A is a queue,
if discovered|v] is false It is equivalent to

add v fo A check for duplicates
layer[v] = layer[u] + 1 when adding to A

discovered|[v] = true
add (u,v) to T
end
end
end

Running Time

Set explored[u] to be false for all u
A=1{s}
while A is not empty
Take a node u from A
if explored[u] is false
set explored[u] = true
for each edge (u,v) incident fo u
add v to A
end
end
end
Discuss on board: running time is O(n+m),

pending correct data structure...

Representing Graphs:
Adjacency List

Adjacency list. Node indexed array of lists.

@ Two representations of each edge.

@ How much memory?

@ How long to find a specific edge?

@ How long fo find all edges incident on a node?

1 (2] 4] T
by 2 | 1G5 4
l><l/ 3 |2] +—|5
4 [1|@1> 2
5 |1]|@1—>3

Finding all Connected
Components in a Graph

@ Running BFS or DFS find all nodes connected
to the start node

@ How do we find all connected components?

@ How expensive is that?

Party Problem

@ You want to throw a party at which there
are no pairs of guests that do not get along.

@ You want to invite as many guests as
possible.

@ How would you solve this?

Application:
Bipartite Testing

The party problem
@ Represent each guest as a node

® Draw an edge between guests who do not get along

@ Find the largest set of nodes where there is no edge
between any pair of nodes in the set

Bipartite Graphs

A bipartite graph is an undirected graph 6 = (V, E) in
which the nodes can be colored red or blue such that
every edge has one red and one blue end.

(3
0/ IS a bipartite graph — <

o \.

. A e 4
.&s NOT a bipartite graph oA

A bipartite solution

20

& @

A bipartite solution

paas

& @

A bipartite solution

paNas

Sp

A bipartite solution

A bipartite solution

/

SR

Cheryl

A bipartite solution

& $ G
|
&

A bipartite solution

A bipartite solution

&9 G
SRE

Who should you invite?

BFS and Bipartite Graphs

Let G be a connected graph
Lemma 1. G is bipartite if and only if G has ho odd cycles

Lemma 2. Let T be a BFS tree of 6. Then G is bipartite if and
only if there is no edge between any two nodes in the same layer.

BFS and Bipartite Graphs

Let G be a connected graph
Lemma 1. G is bipartite if and only if G has no odd cycles

Lemma 2. Let T be a BFS tree of 6. Then G is bipartite if and
only if there is no edge between any two nodes in the same layer.

Brenda

Cheryl

Layer 2

Topological Sort

@ Lemma 1. If G has a fopological order, then G
IS a DAG.

@ Lemma 2. If G is a DAG, then G has a
topological order.

@ Proof by algorithm
@ Find a node with no incoming edges

@ Repeat...

